

Food, Energy and Water (FEWS) Learning Modules

June 2021

Introduction to Water Within the FEW Nexus

THE UNIVERSITY OF ARIZONA – INDIGE-FEWSS Ailyn Brizo, Ciara Avelina Lugo, Sarah Abney

PART 2: Water Treatment

Here & Now

LEARNING OBJECTIVES

Describe and define what chemical and microbial contaminants in water are and how they affect public health Describe operational processes of potable water treatment

PART 2: Water Treatment

Here & Now

AGENDA

- **Chemical Contaminants**
- **Microbial Contaminants**
- Water Treatment for Chemical Contaminants
- Water Treatment for Chemical Contaminants

Metric Conversion

Prefix	Abbreviation	Scientific notation	Equal to this many base units
tera	Т	1 x 10 ¹²	1,000,000,000,000
giga	G	1 x 10 ⁹	1,000,000,000
mega	M	1 x 10 ⁶	1,000,000
kilo	k	$1 \ge 10^3$	1,000
hecto	h	1 x 10 ²	100
deka	da	1 x 10 ¹	10
Base unit	Whatever unit	1	1
deci	d	1 x 10 ⁻¹	.1
centi	с	1 x 10 ⁻²	.01
milli	m	1 x 10 ⁻³	.001
micro	μ	1 x 10 ⁻⁶	.000001
nano	n	1 x 10 ⁻⁹	.00000001
pico	р	1 x 10 ⁻¹²	.00000000001

THE UNIVERSIT OF ARIZONA

Chemical Contaminants

- Common Contaminants of Concern
- Effects on Human Health
- Sources

This water has been tested and found to exceed Navajo EPA and U.S.EPA human drinking water standards for uranium or other contaminants.

Navajo Nation policy is that livestockuse-only wells are not to be used for human drinking water.

Chemical & Engineering News

Common Contaminants of Concern

- Heavy Metals
- Organic Molecules
 - Glucose
 - Some carcinogens
- pH
- Conductivity
 - How well water conducts electricity
 - Dependent on dissolved ions and temperature
- Hardness
 - Calcium and Magnesium
- Turbidity (Color)

Microbial Contaminants

- Microbes & Pathogens
- Transmission
- Human Health Effects & Sources

Microbes: To be Pathogenic or not to be?

Not all microbes are bad!

FUN FACT: Less than half of the cells in your body are **human** (~30 trillion) ... they are actually **microbes** (~39 trillion)

Pathogenicity: the ability of an infectious agent to cause disease.

Opportunistic Pathogen: a pathogen that causes disease only when host resistance is impaired. Infectivity: the ability of an infectious agent to infect. Toxigenicity: the ability for a pathogen to produce a toxin to

contribute to development of disease Virulence: the quantitative ability of an agent to cause disease/death

The Microbes Matrix: Water-based v. Waterborne

	Water-based pathogens	Waterborne pathogens	
	Originate in water	Originate in fecal matter	
	Primarily transmitted by direct water contact or inhalation	Primarily transmitted by ingestion	
	Not transmitted person-to-person	Transmitted person-to-person	
	Example diseases: respiratory illness, conjunctivitis, Legionellosis, skin and wound infections	Example diseases: diarrhea, vomiting, hepatitis, meningitis, cholera, kidney failure, paralysis, myocarditis	
	Example pathogens: <i>Legionella</i> <i>pneumophila, Pseudomonas aeruginosa,</i> <i>Naegleria fowleri,</i> Mycobacterium	Example pathogens: norovirus, hepatitis A virus, <i>E. coli</i> 057:H7, <i>Campylobacter</i> species, <i>Vibrio</i> <i>cholera, Shigella, Salmonella</i>	
	Monitored via direct source sampling	Monitored via bacterial indicators (i.e., fecal and total coliforms)	
	Immunocompromised populations more susceptible to infection and adverse outcome	Infections common in immunocompromised and immunocompetent hosts	

Microbes: Where did you come from, where do you go?

OF ARIZONA

Microbes: Where did you come from, where do you go?

COVID-19 and Water Quality: Pathogen to Pandemic

Treatment of Chemical Contaminants

- Coagulation and Flocculation
- Sedimentation
- Granular Media
 Filtration
- Membrane Filtration

Examples of Water Treatment Systems

Coagulation and Flocculation

Ideal for removing suspended solids Coagulation

- Addition of chemicals to destabilize particles for flocculation
 Flocculation
- Process of bringing the particles together so that they aggregate into larger particles

THE UNIVERSIT

Sedimentation

Occurs after coagulation and flocculation

- Very basic process where particles settle to bottom of a tank because it has very little/no flow or disturbance
- The water resides here for time periods ranging from 2 to 8 hours and flocculated particles settle out as a sludge.
- Can be used in water treatment plants, but also at any scale

Coagulation, Flocculation, and Sedimentation Example

Granular Media Filtration

- Primarily used for organic molecules
- Considered ancient technology
- Improves taste
- Can use a variety of different media, including sand, activated carbon, and anthracite (a kind of coal)

Fernandes, Ana & Gomes, Henrique & Campello, Eduardo M. B. & Pimenta, Paulo. (2017). A Fluid-Particle Interaction Method for the Simulation of Particle-Laden Fluid Problems. 10.20906/CPS/CILAMCE2017-0139.

Membrane Filtration

Uses Semipermeable membranes Separate constituents based on physical properties (ex. size) and chemical properties (ex. charge) **Used for removing dissolved** contaminants that cannot be removed by pervious methods Used to remove heavy metals and salts

THE UNIVERSITY OF ARIZONA

Membrane Filtration

Uses Semipermeable membranes Separate constituents based on physical properties (ex. size) and chemical properties (ex. charge) **Used for removing dissolved** contaminants that cannot be removed by pervious methods **Used to remove heavy metals** and salts

THE UNIVERSITY

Contaminants removed depend on membrane characteristics

Classification of Membrane Filtration

OF ARIZONA

What is *reverse* Osmosis (or nanofiltration)?

HE UNIVERSITY

Treatment of Microbial Contaminants

- Size Exclusion
- UV Disinfection
- Chlorine Dose
 and Time

e Exclusion is Inclusive

Microfiltration Ultrafiltration Reverse Osmosis

THE UNIVERSITY

UV Disinfection

Table 19.3 UV Radiation Advantages and Disadvantages Advantages Disadvantages Excellent germicidal qualities Turbidity levels affect UV radiation's ability to disinfect, allowing possible microbial survival Maintenance includes regular tube Effectively destroys microorganisms cleaning and replacement as needed; periodic acid washing removes chemical buildup Extremely hazardous to the eyes; Use in hospitals, biological testing facilities, and many other similar requires proper eye protection locations for sterilization means effectiveness is well tested Ballast Power supply

Wastewater Disinfection, Washington, DC, 1986, p. 158.)

Wastewater flow path

A Mathematical Approach to Dose and Time

THE UNIVERSITI

Indige-FEWSS Team

Karletta Chief Environmental Science **Kimberly Ogden** *Chemical & Environmental Engineering*

Robert Arnold *Chemical & Environmental Engineering*

Benedict J. Colombi American Indian Studies

Murat Kacira Biosystems Engineering

Vasiliki Karanikola Chemical & Environmental Engineering **Erin L. Ratcliff** *Chemical & Environmental Engineering*

Valerie Shirley Teaching, Learning and Sociocultural Studies

Kelly Simmons-Potter *Electrical & Computer Engineering; Optical Sciences*

Benita Litson and Bryan Neztsosie *Diné College, Land Grant Office*

COLLEGE OF ENGINEERING

Cara Shopa, Program Coordinator

Torran Anderson, Outreach Coordinator

Food Module Authors

- Dr. Murat Kacira Module Lead Biosystems Engineering
- Rebekah Waller
 Biosystems Engineering
- Jaymus Lee Biosystems Engineering

- Amy Pierce
 Biosystem Engineering
- Alexandra Trahan Environmental Science
- Ruth Pannill School of Natural Resources and the Environment

Energy Module Authors

• Dr. Kelly Simmons-Potter

Module Lead Electrical & Computer Engineering

- Kyle Boyer Electrical & Computer Engineering
- Manuelito Chief Electrical & Computer Engineering

- Frances Willberg Electrical & Computer Engineering
- Anna Rich Material Science & Engineering
- William Borkan Environmental Science

Water Module Authors

• Dr. Robert Arnold

Module Co-Lead Chemical & Environmental Engineering

• Dr. Karletta Chief

Module Co-Lead Environmental Science

• Dr. Vasiliki Karanikola

Module Co-Lead Chemical & Environmental Engineering

• Christo college of Engineering Electrical & C Chemica

Christopher Yazzie Chemical & Environmental Engineering

- Marisa Gonzalez Chemical & Environmental Engineering
- Sarah Abney Environmental Science
- Ciara Lugo
 Chemical & Environmental Engineering
- Ailyn Brizo Chemical & Environmental Engineering

Electrical & C

Indigenizing Curriculum Contributors

- **Dr. Valerie Shirley** *Teaching, Learning and Sociocultural Studies*
- Dr. Karletta Chief Environmental Science
- Torran Anderson Community Engagement Coordinator
- Nikki Tulley Environmental Science

- JoRee LaFrance Environmental Science
 - Marquel Begay School of Natural Resources & the Environment
- Manuelito Chief Electrical & Computer Engineering
- Christopher Yazzie
 Chemical & Environmental Engineering

The UArizona Indige-FEWSS NSF NRT would like to thank you for joining us today!

A NSF funded program in partnership with Diné College.

This material is based upon work supported by the National Science Foundation under Grant #DGE1735173.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation