

NSF NRT-InFEWS: Indigenous Food, Energy, and Water Security and Sovereignty Presents:

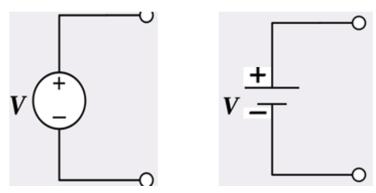
Food, Energy and Water (FEWS) Learning Modules

June 2021

Electrical Design Basics and Considerations

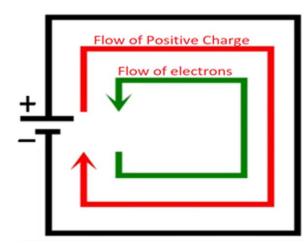
Presented by Frances Willberg

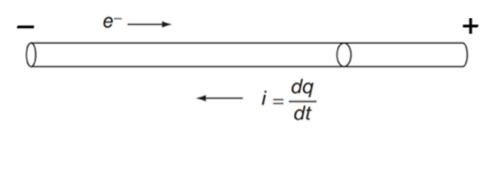
Please have a calculator on hand (phone, computer, handheld, etc)



Voltage (Volts) is a quantity that measures electrical potential in an electrical system. The symbol (V) is used to represent voltage.

Batteries and energy sources (PV) are viewed as voltage sources.

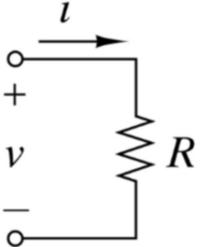




Current

Current (Amps, A) represents the rate of electron charge flow. The symbol (I) is used to represent current. By convention, negative charges moving in one direction constitutes a positive current flow in the opposite direction

college of Engineering Electrical & Computer Engineering

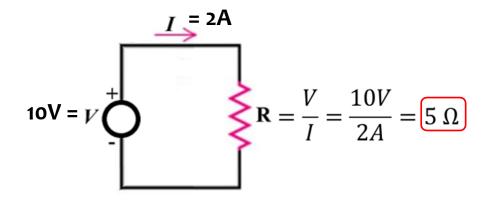


Resistance

Resistance (Ohms, Ω) is the opposition to the flow of current. The symbol (R) is used to represent resistance. * Ohm's Law:

$$V = IR$$
$$I = \frac{V}{R}$$
$$R = \frac{V}{I}$$

COLLEGE OF ENGINEERING Electrical & Computer Engineering



Solve for the unknown quantity

Solution: Ohm's Law: V = IR

V = Voltage (V) I = Current (A) R = Resistance (Ω)

college of Engineering Electrical & Computer Engineering

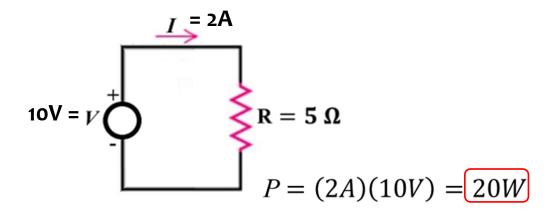
Power (Watts) is the measure of energy per unit time.

$$P = V * I = (voltage) * (current)$$
$$= \frac{V^2}{R} = I^2 R$$

V = Voltage (V) I = Current (A) R = Resistance (Ω)

college of Engineering Electrical & Computer Engineering

Power Example



Solve for the power absorbed by the resistor

V = Voltage (V) I = Current (A) R = Resistance (Ω) P = Power (P)

Solution:

Power: $P = IV = I^2 R$

Energy is the power consumed over a period of time (seconds or hours).

Energy = Power x time = Watts x sec

e.g. 10Ws, 5 kWh (5000Wh)

$$E/t = P$$
$$E = P * t = IVt$$

V = Voltage (V) I = Current (A) t = Time (hr/sec)

Electrical & Computer Engineering

Energy Example

Solve for the energy absorbed by a 500W heater over 3 hours P = 500W t = 3 hours Energy: E = Pt = IVt

Solution:

E = Pt = (500W)(3hr)= 1500Whr = 1.5 kWhr

V = Voltage (V) I = Current (A) R = Resistance (Ω) P = Power (P) E = Energy (Whr)

Equations & Conversions

Power = V x I = I²R = Energy ÷ time
 1000 Watts = 1 kiloWatt (kW)

1 Watt = 1 Volt x 1 Amp

- * Voltage = I x R
 - 1 Volt = 1000 milliVolts (mV)
- * Current = V/R
 - 1 Amp = 1000 milliAmps (mA)
- * Resistance = V / I
 - 1 Ohm = 1 Volt ÷ 1 Amp
- * Energy = P x t

1 kiloWatt hour (kWhr) = 1000 Watt hours (Wh)

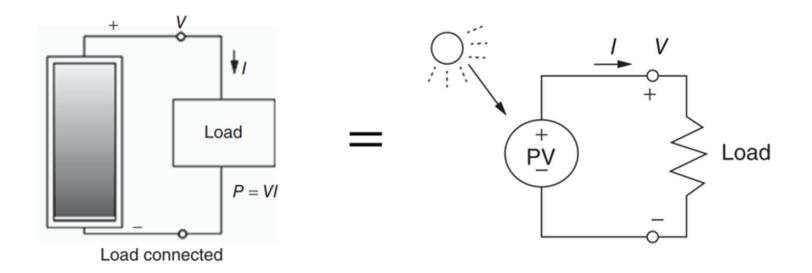
COLLEGE OF ENGINEERING

Electrical & Computer Engineering

Units and Dimensions

1 kilo = 1,000x 1 mega = 1,000,000x 1 giga = 1,000,000,000x 1 tera = 1,000,000,000,000x

- Power = rate of energy expenditure (Watts, kilowatts, ...)
- Electrical power = voltage x current = 1 Watt = 1 Volt x 1 Amp
- 1 horsepower = 746 Watts
- Energy = power use over time (watt-hour, BTU, Joule, Calorie)
- 1,000 BTU's = 293 W-hr
- 1,000 calories = 1.16 W-hr
- 1,000 Joules = 1,000 Newton-meter = 0.278 W-hr
- 1 W-hr = 2.25x10²² electron volts

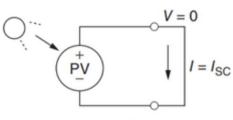


PV as a Power Source:

PV circuit representation:

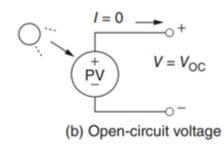
* PV is used as a voltage source

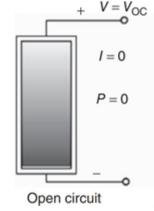
COLLEGE OF ENGINEERING



PV as a Power Source:

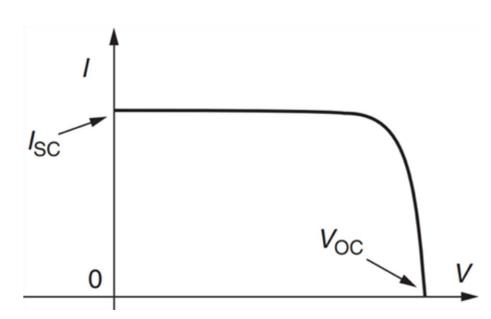
Two conditions of interest


- * Short-circuit current, I_{SC}
 - Terminals are shorted, current is measured



(a) Short-circuit current

- * Open-circuit voltage, V_{OC}
 - * Terminals are open, voltage is measured


Electrical & Computer Engineering

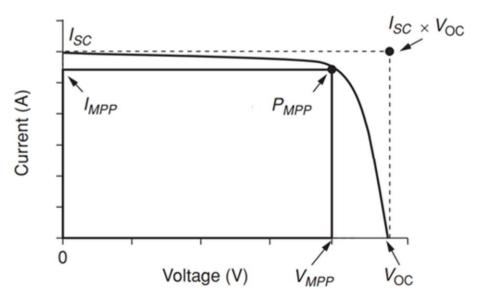
PV I-V Relationship:

V.curve shows the relationship between voltage and current for a PV cell.

- Remember that Power is equal to Voltage x Current (P = IV).
- Maximum Power is the point at which the product of voltage and current is maximum.
- Notice that current is maximum at I_{sc} but voltage is zero.
- Likewise, the voltage is maximum at V_{oc} but current is zero.

COLLEGE OF ENGINEERING

Electrical & Computer Engineering

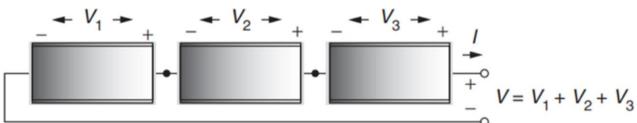


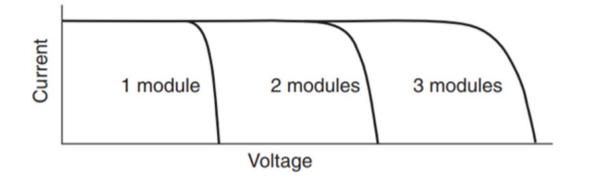
PV Sticker Information

Trina Solar Smart Energy Together	
TSM-305PC14	Made in China
Maximum Power (Pmax)	305W ;3%
Maximum Power Voltage (Vmp)	36.6V
Maximum Power Current (Imp)	8.33A
Open Circuit Voltage (Voc)	45.5V
Short Circuit Current (Isc)	8.81A
Maximum System Voltage	DC1000V
Maximum Series Fuse	15A
Module Application	Class A
For field connections, use minimum insulated for a minimum 90°C	4mm ² copper wires
Electrical Rating At STC AM=1.5 IRRADIANCE=1000W	//m² Temp.=25°C
This module produces electricity wh Follow all applicable electrical safet	Electrical Hazard nen exposed to light. y precautions.
Changzhou Trina Solar Ene www.trinasolar.co	ergy Co.,Ltd.

Remember that $P_{MPP} = I_{MPP} \times V_{MPP}$

COLLEGE OF ENGINEERING Electrical & Computer Engineering



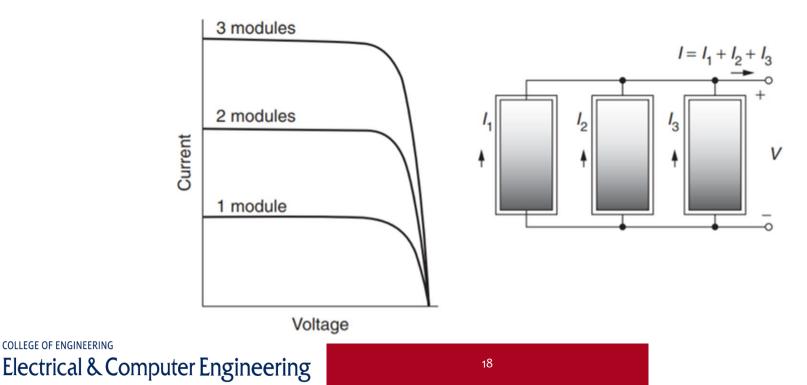

PV Panels in Series:

For PV modules in series,

- * Voltage adds
- * Current remains constant

COLLEGE OF ENGINEERING

Electrical & Computer Engineering


COLLEGE OF ENGINEERING

PV Panels in Parallel:

For PV modules in parallel,

- * Current adds
- * Voltage remains constant

Useful Information

- Power = V x I = I²R = Energy ÷ time
 1000 Watts = 1 kiloWatt (kW) 1
 Watt = 1 Volt x 1 Amp
- * Voltage = I x R
 1 Volt = 1000 milliVolts (mV)
- * Current = V/R
 - 1 Amp = 1000 milliAmps (mA)
- * Resistance = V / I
 - 1 Ohm = 1 Volt ÷ 1 Amp
- * Energy = P x t

1 kiloWatt hour (kWh) = 1000 Watt hours (Wh)

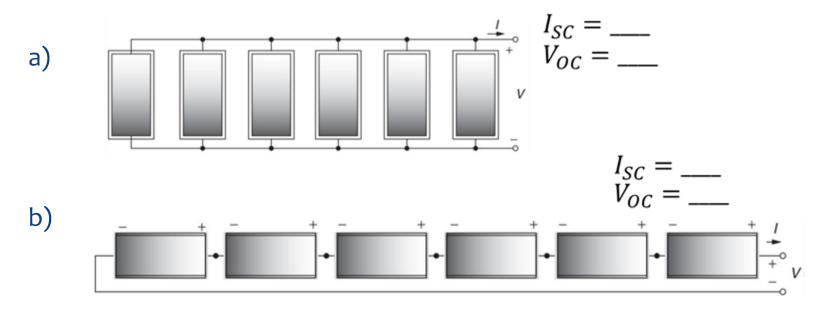
PV panels in series:

- Current remains constant
- Voltages add

PV panels in parallel:

- Voltage remains constant
- Currents add

college of Engineering Electrical & Computer Engineering

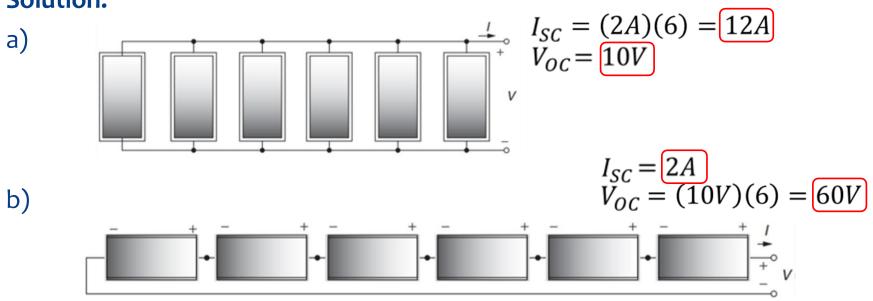


Suppose each PV panel has the following:

 $I_{sc} = 2A$, $V_{oc} = 10V$. What should the total I_{SC} and V_{oc} be for the following array configurations?

Remember that voltage adds in series and current adds in parallel

COLLEGE OF ENGINEERING Electrical & Computer Engineering

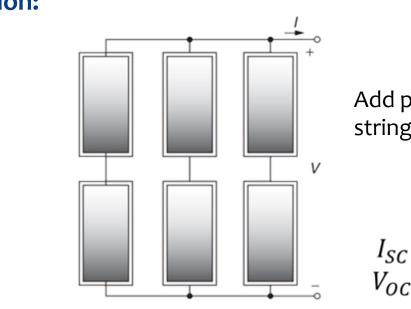


Suppose each PV panel has the following:

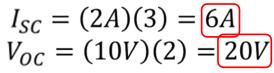
 $I_{sc} = 2A$, $V_{oc} = 10V$. What should the total I_{SC} and V_{oc} be for the following array configurations?

Remember that voltage adds in series and current adds in parallel

Solution:


Suppose each PV panel has the following:

 $I_{sc} = 2A$, $V_{oc} = 10V$. What should the total I_{SC} and V_{oc} be for the following array configurations?


Remember that voltage adds in series and current adds in parallel

Solution:

c)

Add panels in series first, then add strings of panels in parallel

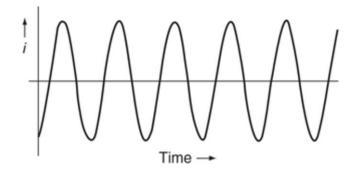
college of Engineering Electrical & Computer Engineering

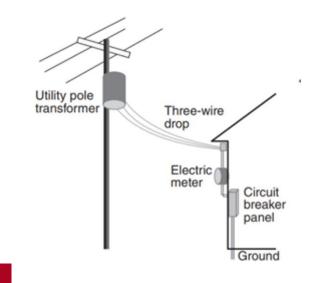
Direct Current

Direct Current (DC) is when charge flows at a steady rate in **one direction** only Batteries, PV, Wind provide DC current.

Time —

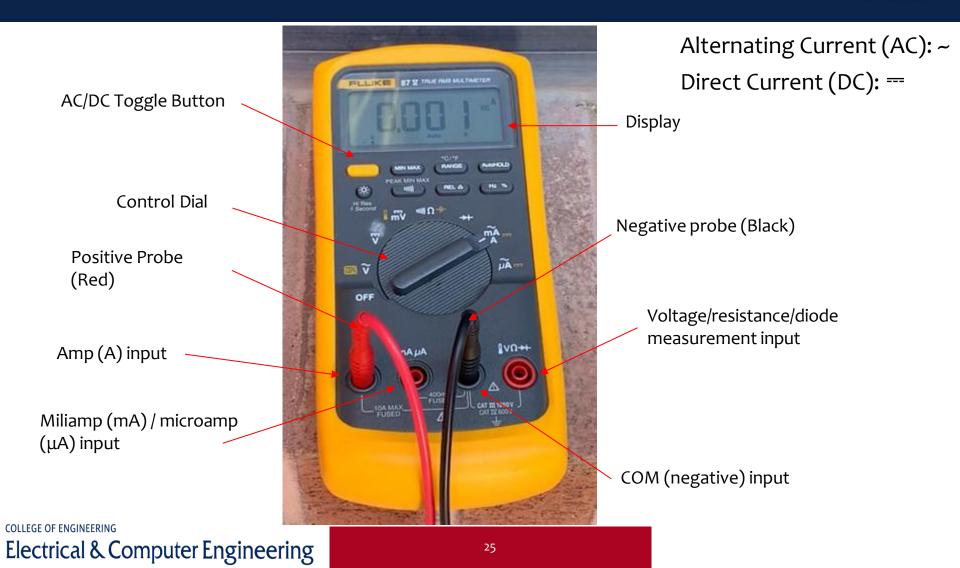
college of Engineering Electrical & Computer Engineering



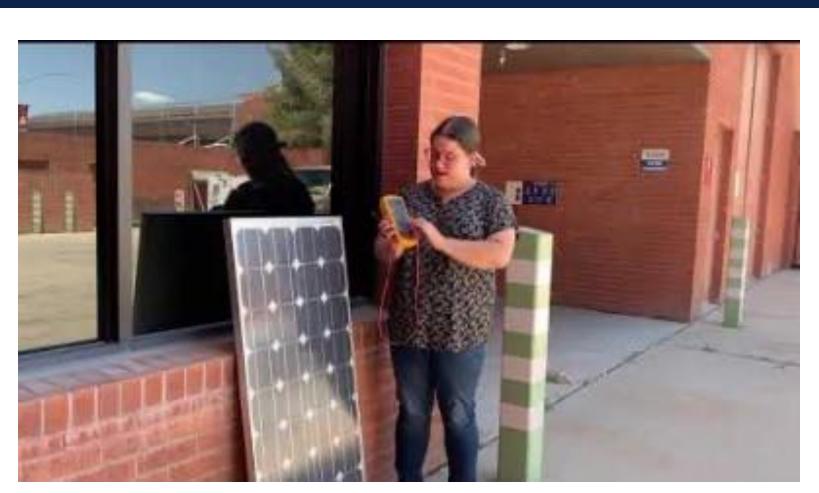

Alternating Current

Alternating Current (AC) is when charge flows back and forth sinusoidally.

- * AC electricity in the US delivered by utility has a frequency (the rate at which the direction changes) of 60 cycles/s or 60 Hz
- * Inverters can be used convert from DC to AC



college of Engineering Electrical & Computer Engineering



Digital Multimeter

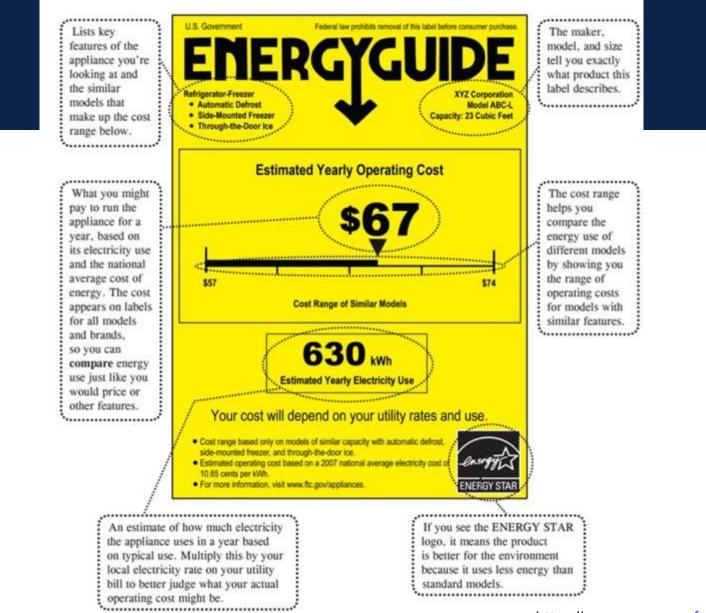
COLLEGE OF ENGINEERING Electrical & Computer Engineering

When computing the impact of any appliance on total power consumption, it is very important to look not just at the rate of power use (in watts per hour), but also at the number of hours per day (or year) of typical use.

Example:

- A laptop computer uses 15-60 watts per hour, 10 hours per day
 - = <u>150 to 600 Watts</u> of energy consumed each day
- A toaster oven uses 1200 watts per hour, 5 minutes per day (1200 W/hr) ÷ (60 minutes/hour) = 20 Watts per minute (20 W/min) x (5 minutes) = 100 W per day

EnergyStar Appliances


EnergyStar appliances are held to strict standards by the US Environmental Protection Agency (EPA) to be more energy efficient than their conventional counterparts.

They can be more expensive upfront, but the energy savings they deliver can result in significant cost savings over the life of the appliance.

https://www.energystar.gov/products/ what_makes_product_energy_star

college of Engineering Electrical & Computer Engineering https://www.consumer.ftc.gov/articles/007 2-shopping-home-appliances-useenergyguide-label

Annual Energy Consumption of Common Appliances

Conventional Appliances:

- * Refrigerator: 327 kWh
- * Washing Machine: 187 kWh

No EnergyStar Rating:

- * Laptop: 175 kWh
- * Cell Phone Charger: 20 kWh
- * Microwave: 220 kWh

EnergyStar Appliances:

- * Refrigerator: 297 kWh
- * Washing Machine: 93 kWh

References

1"Digital Multimeter and PV Panel Demo for TCUP 2021", Frances Willberg, 25-May-2021. [Online]. Available: https://www.youtube.com/watch?v=aefBZXKdhw8 2"What makes a product ENERGY STAR?", EnergyStar. [Online]. Available: https://www.energystar.gov/products/what_makes_product_energy_star 3"How to Use the EnergyGuide Label to Shop for Home Appliances", Federal Trade Commission Consumer Information. [Online]. Available: https://www.consumer.ftc.gov/articles/how-use-energyguide-label-shop-homeappliances

Indige-FEWSS Team

Karletta Chief Environmental Science

Kimberly Ogden *Chemical & Environmental Engineering*

Robert Arnold *Chemical & Environmental Engineering*

Benedict J. Colombi *American Indian Studies*

Murat Kacira Biosystems Engineering

Vasiliki Karanikola Chemical & Environmental Engineering **Erin L. Ratcliff** *Chemical & Environmental Engineering*

Valerie Shirley Teaching, Learning and Sociocultural Studies

Kelly Simmons-Potter *Electrical & Computer Engineering; Optical Sciences*

Benita Litson and Bryan Neztsosie *Diné College, Land Grant Office*

Cara Shopa, Program Coordinator

Torran Anderson, Outreach Coordinator

Food Module Authors

- Dr. Murat Kacira
 Module Lead
 Biosystems Engineering
- Rebekah Waller
 Biosystems Engineering
- Jaymus Lee Biosystems Engineering

- Amy Pierce
 Biosystem Engineering
- Alexandra Trahan Environmental Science
- Ruth Pannill School of Natural Resources and the Environment

Energy Module Authors

• Dr. Kelly Simmons-Potter

Module Lead Electrical & Computer Engineering

- Kyle Boyer Electrical & Computer Engineering
- Manuelito Chief Electrical & Computer Engineering

- Frances Willberg Electrical & Computer Engineering
- Anna Rich Material Science & Engineering
- William Borkan Environmental Science

Water Module Authors

• Dr. Robert Arnold

Module Co-Lead Chemical & Environmental Engineering

• Dr. Karletta Chief

Module Co-Lead Environmental Science

• Dr. Vasiliki Karanikola

Module Co-Lead Chemical & Environmental Engineering

Christopher Yazzie
 Chemical & Environmental Engineering

- Marisa Gonzalez Chemical & Environmental Engineering
- Sarah Abney Environmental Science
- Ciara Lugo
 Chemical & Environmental Engineering
- Ailyn Brizo Chemical & Environmental Engineering

Indigenizing Curriculum Contributors

- Dr. Valerie Shirley
 Teaching, Learning and
 Sociocultural Studies
- Dr. Karletta Chief Environmental Science
- Torran Anderson Community Engagement Coordinator
- Nikki Tulley Environmental Science

- JoRee LaFrance Environmental Science
- Marquel Begay
 School of Natural Resources & the Environment
- Manuelito Chief Electrical & Computer Engineering
- Christopher Yazzie
 Chemical & Environmental Engineering

The UArizona Indige-FEWSS NSF NRT would like to thank you for joining us today!

A NSF funded program in partnership with Diné College.

THE UNIVERSITY OF ARIZONA RESEARCH, INNOVATION & IMPACT Arizona Institutes for Resilience

This material is based upon work supported by the National Science Foundation under Grant #DGE1735173.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation