

NSF NRT-InFEWS: Indigenous Food, Energy, and Water Security and Sovereignty Presents:

Food, Energy and Water (FEWS) Learning Modules

June 2021

Electrical Systems and System Sizing

Presented by Anna Rich

Sizing a System

Factors that impact a grid tied system

- Budget
- * Available area for system
- Annual energy consumption
- Factors that impact a stand-alone system
- Annual energy consumption
- * Available solar resource

Sizing a System: Peak Sun Hours

Peak Sun Hours (PSH): The number of hours the PV system is expected to operate at rated standard test conditions.

- PSH is specific to region
- * Depends on tracking abilities, panel tilt and orientation.

Sizing a System: Peak Sun Hours

Calculating annual energy generation from PSH

PSH for area: Divide daily insolation value for geographic area by 1000 W/m² (Standard Test Condition (STC) irradiance level).

Example:

$$PSH_{Arizona} = 6.5 \frac{\frac{kWh}{m^2}}{day} \div \frac{1kW}{m^2} = 6.5 \frac{hours}{days}$$

For a 2kW system,

Annual energy yield =
$$2kW \times 6.5 \frac{hours}{dav} \times 365 \frac{days}{vear} = 4745 \frac{kWh}{vear}$$

Electrical & Computer Engineering

Sizing a System: Derate Factor

PV array efficiency is affected by age and degradation, operating temperature, soiling or shading, and losses in wiring. **Derate Factor** takes this into account.

- * Spacific to DV array
- Specific to PV array
- * Acceptable range: 0.75 0.95 (5% to 25% total losses)

college of Engineering Electrical & Computer Engineering

Sizing a System: Estimating Demand Example

Example 6.9 A Modest Household Demand. Estimate the monthly energy demand for a cabin with all AC appliances, consisting of a 19 cu ft refrigerator, six 25-W compact fluorescent lamps (CFLs) used 6 h/d, a 44-in LCD TV turned on 3 h/d and connected to a satellite with digital video recording (DVR), 10 small electric devices using 3 W continuously, a microwave used 12 min/d and a small range burner 1 h/d, a clothes washer that does four loads a week with solar heated water, a laptop computer used 2 h/d, and a 300-ft deep well that supplies 120 gal of water per day.

Sizing a System: Estimating Demand Example

TABLE 6.11 Power Requirements of Typical Household Loads

Kitchen Appliances				
Refrigerator/freezer: Energy Star 14 cu ft.	300 W, 950 Wh/d			
Refrigerator/freezer: Energy Star 19 cu ft.	300 W, 1080 Wh/d			
Refrigerator/freezer: Energy Star 22 cu ft.	300 W, 1150 Wh/d			
Chest freezer: Energy Star 22 cu ft.	300 W, 1300 Wh/d			
Dishwasher (hot dry)	1400 W, 1.5 kWh/load			
Electric range burner (small/large)	1200/2000 W			
Toaster oven	750 W			
Microwave oven	1200 W			
General Household				
Clothes dryer (gas/electric, 1400 W)	250 W; 0.3 / 3 kWh/load			
Washer (w/o H2O heating/with electric heating)	250 W; 0.3/2.5 kWh/load			
Furnace fan: 1/2 hp	875 W			
Celling fan	100 W			
Air conditioner: window, 10,000 Btu	1200 W			
Heater (portable)	1200-1875 W			
Compact fluorescent lamp (100 W equivalent)	25 W			
Clothes iron	1100 W			
Clocks, cordless phones, answering machines	3 W			
Hair dryer	1500 W			

Consumer electronics (Active	(Standby)			
TV: 30–36 in Tube	120/3.5 W			
ΓV: 40–49 in Plasma	400/2 W			
TV: 40-49 in LCD	200/2 W			
Satellite or cable with DVR (Tivo)	44/43 W			
Digital cable box (no DVR)	24/18 W			
DVD, VCR	15/5 W			
Game console (X-Box)	150/1 W			
Stereo	50/3 W			
Modem DSL	5/1 W			
Printer inkjet	9/5 W			
Printer laser	130/2 W			
Tuner AM/FM	10/1 W			
Computer: Desktop (on/sleep/off)	74/21/3 W			
Computer: Notebook (in use/sleep)	30/16 W			
Computer monitor LCD	40/2 W			
Outside				
Power tools, cordless	30 W			
Circular saw, 7 1/4 in	900 W			
able saw, 10 in 1800 W				
Centrifugal water pump: 50 ft at 10 gal/min	450 W			
Submersible water pump: 300 ft at 1.5 gal/min	180 W			

Concurrent alectropics (Active/Standby)

IN THE MANY IN THE PART OF

COLLEGE OF ENGINEERING Electrical & Computer Engineering

Sizing a System: **Estimating Demand Example**

Solution. Using data from Table 6.11, we can put together the following table of power and energy demands. The total is about 6.3 kWh/d which is about 2300 kWh/yr.

Note:	Appliance	Power (W)	Hours/day	Wh/d	Percent
1)Kitchen uses 40% of	Refrigerator, 19 cu ft Range burner (small)	300 1200	1	1080 1200	17% 19%
total due to all-electric	Microwave at 12 min/d Lights (6 at 25 W 6 h/d)	1200	0.2	240	4%
stove.	Clothes washer (4 load/wk at 0.3 kWh)	250	0	171	3%
2)An efficient	LCD TV 3 h/d (on) LCD TV 21 h/d (standby)	200 2	3 21	600 42	10% 1%
refrigerator is being	Satellite with DVR Satellite (standby)	44	3	132	2%
used which is important	Laptop computer (2 h/d at 30 W)	30	2	60	1%
in a PV system	Assorted electronics (10 at 3 W) Well pump (120 gal/d at 1.5 gal/min)	30 180	24 1.33	720 240	11% 4%
•	Total	3566		6288	

COLLEGE OF ENGINEERING Electrical & Computer Engineering 6288

Sizing a System: Sizing Example

Example: How would you size a PV system to satisfy a 6.3 kWh/d demand in Tucson, AZ? Assuming Tucson gets 5.5 full sun hours per day (at 1000W/m²) in the winter, and a 0.8 derate factor.

$$P_{\rm DC}(kW) = \frac{Energy (kWh/d)}{(h/d \ full \ sun)(Derate)}$$

Solution: We want to meet a 6.3kWh/d demand.

$$P_{\rm DC}(kW) = \frac{6.3 \, kWh/d}{(5.5 \, h/d)(0.8)} = 1.43kW$$

Electrical & Computer Engineering

Sizing a System: Sizing Example

Example: How many solar panels in series would you need to power this demand? Assume maximum power $P_{max} = 300W$

Solution: We want to meet a 1.43kW demand.

Number of Panels = 1.43kW = 4.76 = 5 panels 300W

- * PV panel efficiency usually between 18% 25%
- Inverter efficiency usually between 85% 95%
- * Number of panels used in system area available for PV use
- * Panel configuration series and parallel connections
- Battery storage capacity want the PV system to be able to charge batteries while supporting the electric load
- Derate factor how much the power production can be expected to change based on panel temperature

Shading

Shading is a very big problem in installing solar panels and arrays. Even the shading of a single row can shut down an entire module.

Recommended toe-to-back spacing, s = 3h PV array fields generally do not follow this recommendation because of high land costs.

college of Engineering Electrical & Computer Engineering

Effect of Shading

- If a solar cell is shaded, it will not generate a voltage.
- In a series configuration, it just acts as resistor and reduces the voltage of the entire row.
- Parallel rows will generate more voltage and will drive current backwards into the row with the shaded cell.
- * The shaded solar cell will heat up.

COLLEGE OF ENGINEERING Electrical & Computer Engineering

Bypass and Blocking Diodes

- If shading or cell failure occurs, then the adjacent cells and rows will dump current into the shaded cell or group of cells.
- This can heat the cell and cause premature failure or can lower the cell voltage which turns off the inverter.
- Increased temperature also reduces the efficiency and the power produced by PV.

J. R. Dunlop, <u>Photovoltaic Systems</u>, American Tech. Pub, 2010

Bypass and Blocking Diodes

Solutions:

- Blocking diodes are used between panels to stop reverse current from flowing into the shaded panel.
- Bypass diodes are used between cells to guide the current around the shaded cell.
- These diodes are either built in the internal module circuitry or added in the junction box.

J. R. Dunlop, <u>Photovoltaic Systems</u>, American Tech. Pub, 2010

PV Shading Demonstration Shaded PV Panel

Current measurement of a completely shaded PV panel reading 0.001 A

Voltage measurement of a completely shaded PV panel reading 0.001 V

COLLEGE OF ENGINEERING Electrical & Computer Engineering

PV Shading Demonstration Partially-Shaded PV Panel

Current measurement of a partially-shaded PV panel reading 0.175 A

Voltage measurement of a partially-shaded PV panel reading 15.64 V

Electrical & Computer Engineering

PV Shading Demonstration Illuminated PV Panel

Current measurement of a completely illuminated PV panel reading 1.97 A

Voltage measurement of a completely illuminated PV panel reading 19.52 V

PV Panel Angle

- Solar panels in the northern hemisphere should be mounted facing south
- Stationary panels should be mounted at an angle equal to the latitude of their location for maximum average power production
- Panel power output will change over the course of the day and year based on the movements of the sun

https://medium.com/@solarify/which-directionmust-solar-panels-face-and-what-angle-should-theybe-tilted-at-7242c671e4b9

References

9 Dunlop, J. R. (2010). *Photovoltaic Systems*, American Tech. 10"*Which direction must solar panels face, and what angle should they be tilted at?*", Solarify on Medium, 2-Aug-2018. [Online]. Available: <u>https://medium.com/@solarify/which-direction-must-solar-panels-face-and-what-angle-should-they-be-tilted-at-7242c671e4b9</u>

Indige-FEWSS Team

Karletta Chief Environmental Science

Kimberly Ogden *Chemical & Environmental Engineering*

Robert Arnold *Chemical & Environmental Engineering*

Benedict J. Colombi *American Indian Studies*

Murat Kacira Biosystems Engineering

Vasiliki Karanikola Chemical & Environmental Engineering **Erin L. Ratcliff** *Chemical & Environmental Engineering*

Valerie Shirley Teaching, Learning and Sociocultural Studies

Kelly Simmons-Potter *Electrical & Computer Engineering; Optical Sciences*

Benita Litson and Bryan Neztsosie *Diné College, Land Grant Office*

Cara Shopa, Program Coordinator

Torran Anderson, Outreach Coordinator

Food Module Authors

- Dr. Murat Kacira
 Module Lead
 Biosystems Engineering
- Rebekah Waller
 Biosystems Engineering
- Jaymus Lee Biosystems Engineering

- Amy Pierce
 Biosystem Engineering
- Alexandra Trahan Environmental Science
- Ruth Pannill School of Natural Resources and the Environment

Energy Module Authors

• Dr. Kelly Simmons-Potter

Module Lead Electrical & Computer Engineering

- Kyle Boyer Electrical & Computer Engineering
- Manuelito Chief Electrical & Computer Engineering

- Frances Willberg Electrical & Computer Engineering
- Anna Rich Material Science & Engineering
- William Borkan Environmental Science

Water Module Authors

• Dr. Robert Arnold

Module Co-Lead Chemical & Environmental Engineering

• Dr. Karletta Chief

Module Co-Lead Environmental Science

• Dr. Vasiliki Karanikola

Module Co-Lead Chemical & Environmental Engineering

Christopher Yazzie
 Chemical & Environmental Engineering

- Marisa Gonzalez Chemical & Environmental Engineering
- Sarah Abney Environmental Science
- Ciara Lugo
 Chemical & Environmental Engineering
- Ailyn Brizo Chemical & Environmental Engineering

Indigenizing Curriculum Contributors

- Dr. Valerie Shirley
 Teaching, Learning and
 Sociocultural Studies
- Dr. Karletta Chief Environmental Science
- Torran Anderson Community Engagement Coordinator
- Nikki Tulley Environmental Science

- JoRee LaFrance Environmental Science
- Marquel Begay
 School of Natural Resources & the Environment
- Manuelito Chief Electrical & Computer Engineering
- Christopher Yazzie
 Chemical & Environmental Engineering

The UArizona Indige-FEWSS NSF NRT would like to thank you for joining us today!

A NSF funded program in partnership with Diné College.

THE UNIVERSITY OF ARIZONA RESEARCH, INNOVATION & IMPACT Arizona Institutes for Resilience

This material is based upon work supported by the National Science Foundation under Grant #DGE1735173.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation