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fﬁ} Sizing a System

Factors that impact a grid tied system
Budget
Available area for system
Annual energy consumption

Factors that impact a stand-alone system
Annual energy consumption
Available solar resource
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Sizing a System:

Peak Sun Hours

Peak Sun Hours (PSH): The number of hours the PV system is
expected to operate at rated standard test conditions.

PSH is specific to region
Depends on tracking abilities, panel tilt and orientation.
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Sizing a System: I@

Peak Sun Hours

Calculating annual energy generation from PSH

PSH for area: Divide daily insolation value for geographic area by 1000 W/m2(Standard
Test Condition (STC) irradiance level).

Example:
O 1kw h
. m2_ . _ ours
PSH , = 6.5 e 6.5 rr—
For a 2kW system,
Annual energy yield = 2kW X 6.5 ROUTS % 365 2225 = 4745 X%
dav vear vear
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Sizing a System:

Derate Factor

PV array efficiency is affected by age and degradation, operating
temperature, soiling or shading, and losses in wiring.

Derate Factor takes this into account.
Specific to PV array
Acceptable range: 0.75 - 0.95 (5% to 25% total losses)

qu s,
y 4 No MPPT 0.8 10 Toc
hrs/day it '
KWpe {o.ee} ! 1.0 H1—-0.97 0.80 0.85 —={ AC
MDOD
TOR
PVs Derate MPPT  Charger Batteries  |nverter Load
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Sizing a System: @I

Estimating Demand Example

Example 6.9 A Modest Household Demand. Estimate the monthly energy
demand for a cabin with all AC appliances, consisting of a 19 cu ft refrigerator,
six 25-W compact fluorescent lamps (CFLs) used 6 h/d, a 44-in LCD TV turned
on 3 h/d and connected to a satellite with digital video recording (DVR), 10 small
electric devices using 3 W continuously, a microwave used 12 min/d and a small
range burner 1 h/d, a clothes washer that does four loads a week with solar heated
water, a laptop computer used 2 h/d, and a 300-ft deep well that supplies 120 gal
of water per day.

COLLEGE OF ENGINEERING
Electrical & Computer Engineering



Estimating Demand Example

TABLE 6.11 Power Requirements of Typical Household Loads

Kitchen Appliances

Refrigerator/freezer: Energy Star 14 cu ft
Refrigerator/freezer: Energy Star 19 cu fi
Refrigerator/freezer: Energy Star 22 cu fit
Chest freezer: Energy Star 22 cu ft
Dishwasher (hot dry)

Electric range bumer (small/large)
Toaster oven

Microwave oven

300 W, 950 Wh/d
300 W, 1080 Wh/id
300 W, 1150 Wh/d
300 W, 1300 Whid
1400 W, 1.5 kWh/load
120072000 W

750 W

1200 W

General Household

Clothes dryer (gas/electric, 1400 W)

Washer (w/o H,O heating/with electric heating)
Furnace fan: */; hp

Celling fan

Air conditioner: window, 10,000 Btu

Heater (portable)

Compact fluorescent lamp (100 W equivalent)
Clothes iron

Clocks, cordless phones, answering machines
Haur dryer
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250 W; 0.3/3 kWhiload
250 W; 0.3/2.5 kWh/load
875 W

100 W

1200 W

12001875 W

25 W

1100 W

IW

1500 W

Sizing a System:

Consumer electronics (Active/Standby)

T'V: 30-36 in Tube

I'V: 40-49 in Plasma

TV: 40-49 in LCD

Satellite or cable with DVR (Tivo)
Digital cable box (no DVR)

DVD, VCR

Game console (X-Box)

Stereo

Modem DSI

Printer inkjet

Printer laser

Tuner AM/FM

Computer: Desktop (on/sleep/off)

Computer: Notebook (in use/sleep)

Computer monitor LCD

Power tools, cordless
Circular saw, 7 14 in

Table saw, 10 in

Outside

Centrifugal water pump: 50 ft at 10 gal/min

Submersible water pump: 300 ft at 1.5 gal/min

120/3.5W
400/2'W
200/2'W
44/43 W
24718 W
IS/5W
1S0/1'W
S0/3W
S/1'W
9/5W
130/2'W
10/1'W
T4/21/3 W
W0/16'W
W0/2W

30 W

900 W
18300 W
150 W
IS0W



Sizing a System:

Estimating Demand Example

Solution. Using data from Table 6.11, we can put together the following table
of power and energy demands. The total is about (6.3 kWh/d) which is about

2300 kWh/yr.
N Ote : Appliance Power (W)  Hours/day Wh/d Percentage
. Refrigerator, 19 cu ft 1080 '
1)K|tChen uses 40% Of Rung:- burner (small) 1200 1 1200 19%
total due to a”_electrlc Microwave at 12 min/d 1200 0.2 240 4%
Lights (6 at 25 W, 6 h/d) 150 6 900 14%
StOVE Clothes washer (4 load/wk at 0.3 kWh) 250 171 3%
L LCD TV 3 h/d (on) 200 3 600 10%
2)An efficient LCD TV 21 h/d (standby) 2 21 42 1%
- . . Satellite with DVR 44 3 132 2%
refrigerator is being Satellte (standby) 8 o2 03 14
used Wh'Ch |S |mp0rtant Laptop computer (2 h/d at 30 W) 30 2 60 1%
. Assorted electronics (10 at 3 W) 30 24 720 11%
N a PV SyStem Well pump (120 gal/d at 1.5 gal/min) 180 1.33 240 4%

S

Total 3566
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Sizing a System: l@l

Sizing Example

Example: How would you size a PV system to satisfy a 6.3 kWh/d demand in
Tucson, AZ? Assuming Tucson gets 5.5 full sun hours per day (at 1000W/m?2) in
the winter, and a 0.8 derate factor.

Energy (kWh/d)
(h/d full sun)(Derate)

Ppc (kW) =

Solution: We want to meet a 6.3kWh/d demand.

6.3 kWh/d
(5.5 h/d)(0.8)
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1.43kW

Ppc(kW) =




Sizing a System: l@l

Sizing Example

Example: How many solar panels in series would you need to power this
demand? Assume maximum power P,,,, = 300W

Solution: We want to meet a 1.43kW demand.

Number of Panels = 1.43kW = 4.76 =5 panels
300W
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fﬁ Sizing Considerations

- -

PV panel efficiency — usually between 18% - 25%

Inverter efficiency — usually between 85% - 95%

Number of panels used in system - area available for PV use
Panel configuration — series and parallel connections

Battery storage capacity — want the PV system to be able to
charge batteries while supporting the electric load

Derate factor — how much the power production can be
expected to change based on panel temperature
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Shading is a very big problem in installing solar panels and arrays.
Even the shading of a single row can shut down an entire module.

Sun Light

N

NS
s
~

Toe to toe spacing

Recommended toe-to-back spacing, s = 3h
PV array fields generally do not follow this
recommendation because of high land costs.
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Effect of Shading

* |f a solar cell is shaded, it will not
generate a voltage.

* In a series configuration, it just
acts as resistor and reduces the
voltage of the entire row.

* Parallel rows will generate more
voltage and will drive current
backwards into the row with the
shaded cell.

* The shaded solar cell will heat up.
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If shading or cell failure occurs, then the
adjacent cells and rows will dump current
into the shaded cell or group of cells.

This can heat the cell and cause premature
failure or can lower the cell voltage which
turns off the inverter.

Increased temperature also reduces the
efficiency and the power produced by PV.

fﬁ Bypass and Blocking Diodes

L

/ SERIES STRING OF MODULES
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COLLEGE OF ENGINEERING J. R. Dunlop, Photovoltaic Systems,
Electrical & Computer Engineering American Tech. Pub, 2010
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fﬁ Bypass and Blocking Diodes

Solutions:

o . B /SIES RING ODUTLEi
BIOCkIng dIOdeS are used between panels ,"' ''''''''' r 22z ; "_— 8:;:&:1,
to stop reverse current from flowing into g (0
the Shaded panel BLOCKING DIODES—-.‘-“’N_‘. |~

SOURCE CIRCUIT—
Bypass diodes are used between cells to W 7 A

guide the current around the shaded cell.

These diodes are either built in the internal
module circuitry or added in the junction
box.

|
7

BLOCKING DIODE- |,
SOURCE CIRCUITS

BLOCKING DIODES

COLLEGE OF ENGINEERING J. R. Dunlop, Photovoltaic Systems,
Electrical & Computer Engineering American Tech. Pub, 2010




PV Shading Demonstration
Shaded PV Panel

Current measurement of a Voltage measurement of a
completely shaded PV panel completely shaded PV panel
reading 0.001 A reading 0.001V
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PV Shading Demonstration
Partially-Shaded PV Panel

Current measurement of a Voltage measurement of a
partially-shaded PV panel partially-shaded PV panel
reading 0.175 A reading 15.64 V
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PV Shading Demonstration
llluminated PV Panel

Current measurement of a Voltage measurement of a
completely illuminated PV completely illuminated PV
panel reading 1.97 A panel reading 19.52 V
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PV Panel Angle @

Solar panels in the northern
hemisphere should be mounted

faCing SO Uth Sun’s Path During Summer and Winter
Stationary panels should be J June 21
mounted at an angle equal to the | —

. . . ‘ ecemober
latitude of their location for ¥ [

. North /"

maximum average power @%’%
production ’ %
Panel power output will change | Solarpane
over the course Of the day and year https://medium.com/@solarify/which-direction-
based on the movements Of the sun must-solar-panels-face-and-what-angle-should-they-

be-tilted-at-7242c671e4bg
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https://medium.com/%40solarify/which-direction-
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A NSF funded program in partnership with Diné College.
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